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Abstract. We show explicitly, in the framework of the Klein-Gordon equation, that the 
algebraic method based upon unitary irreducible representations of the group SO(2, 1) used 
to solve the problem of strong Coulomb coupling (e2Z> 1 +f) is equivalent to constructing 
solutions that are orthogonal with respect to some mixed scalar product, rather than the 
standard Klein-Gordon scalar product. This elucidates the difference between the spectra 
given by Case’s method, on the one hand and the algebraic method, on the other hand. By 
explicitly computing scattering states, we further show that algebraic solutions describe 
absorption of the particle as in the corresponding classical problem. 

1. Introduction 

As is well known (Case 1950), the Coulomb potential for a Klein-Gordon (KG) particle 
or a Dirac particle becomes singular when the coupling comtant e2Z is greater than, 
respectively or 1. (Throughout this work, Ze signifies the charge of the external 
Coulomb field. We use units such that h = c = 1.) This problem was recently solved 
(Barut and Bornzin 1971) using an algebraic method based upon unitary irreducible 
representations (UIR) of the group SO(2, l ) .  The resulting spectrum in this approach is 
markedly different from the one derived by Case (1950). In particular, for non-zero 
values of the arbitrary constant present in both cases, the algebraic method allows for 
states of zero total energy E only when Z is infinite, whereas, in Case’s method, upon 
crossing E = 0, the energy bound state can either become negative or increase again 
with increasing 2 (Case 1950). This is a somewhat paradoxical situation, as both 
methods purport to do the same thing, i.e. provide a set of solutions defining a domain 
over which the Klein-Gordon or Dirac Hamiltonian is self-adjoint. In this paper, we 
solve that paradox by showing, in the framework of the KG equation, that, in contrast to 
Case’s method, the algebraic method does not lead to solutions that are orthogonal with 
respect to the standard KG scalar product, but rather to a mixed scalar product involving 
both positive and negative energy bound states. By explicitly computing scattering 
states, we shall see that this scalar product can be interpreted as describing absorption of 
the incident particle, in agreement with the behaviour of the solution to the correspond- 
ing classical problem. Section 2 shows, for the KG equation, the equivalence between 
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the algebraic method and our mixed scalar product approach for getting the bound 
states spectrum. Section 3 elucidates the meaning of this scalar product by deriving an 
explicit solution to the problem in the scattering region. Section 4 states our conclu- 
sions. 

2. Bound states of a Klein-Gordon particle in a strong Coulomb field (a2> 1 +;) 

The radial Klein-Gordon equation for a particle of mass mo is given by (Case 1950): 

U =o. (1) 
2 ~ e ’ ~  e 4 z 2 - i ( / + i )  - ( m : - E 2 ) + - - +  

r r2 

Writing: 

1 2 1/2 k =  2 1/29 p = 2(mi-E2)”2r ,  m = iA, A =[e4Z2-(I+5) ] , 

(1) becomes 

Ee2Z 
( 4 - E  1 

T+ --+-+7 u = o .  
d2U dP ( 4 P  “ m 2 )  P 

A solution to ( 2 )  bounded at infinity is given by (Gradshteyn and Ryzhik 1965) 

u ( k ,  A, P )  = CWk,ih(P) (3) 

where Wk,,,+(p) is Whittaker’s function, and C is an arbitrary constant. Note that 
because of the singular nature of the problem (Case 1950), solutions given by (3) are 
finite at the origin for all values of k .  Case (1950) then requires solutions to (1) to be 
orthogonal with respect to the standard KG product: 

2 z e  J ( E ~  + + -) u zl uEz dr. 
r ( U E l ,  E (4) 

Let us now introduce the scalar product {uE1, uE2}, defined as: 

{uEl, u E z ) = ( u E 1 ,  U E Z ) + ( ~ - E ~ ,  u-Ez) ( 5 )  

((Ell -IE21){UEl, UE*)  = U E ~ U ; :  - U&,UZl  - U - E ~ U T & ,  + U ! - E ~ U - E ~ I O  * -  e 

where (uE1, uE2) is defined in (4). From (I) ,  we find, in the usual way: 

(6) 

Using the formula (Gradshteyn and Ryzhik 1965): 

we find from (6), taking C =  2-’ /2(m~-E2)-’ /2/r(~+iA + k )  in (3) and performing 
some straightforward but lengthy algebraic calculations: 
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Our solutions will now be orthogonal with respect to the scalar product {uEl,  uE2} if and 
only if: 

k = k o + n ,  (9) 

or : 

with 

n = 0 ,  * l ,  * 2 . . . ,  

and ko can be restricted, without loss of generality, to be such that Ikol <i. 
Spectrum (9’) is the same as the one derived by Barut and Bornzin (1971), using an 

algebraic method based upon UIR of the group SO(2, 1). The form of our scalar product 
( 5 )  was suggested by the work of Montgomery and O’Raifertaigh (1974), showing how 
to construct IUR of the group SO(2 , l )  by means of Whittaker’s functions. (One can 
show in the same way as Montgomery and O’Raifertaigh (1974), that for e2Z < 1 +; the 
scalar product ( 5 )  reduces to the standard form (4).) It is now clear that Case’s method 
on the one hand and the algebraic method on the other hand do not construct 
self-adjoint extensions for the same self-adjoint problem. While Case constructs 
self-adjoint extensions for the KG Hamiltonian defined with the usual KG metric, the 
algebraic method constructs self-adjoint extensions of the KG Hamiltonian with the 
metric defined by the scalar product (5 ) .  We expect different choices of metrics to lead 
to different physical pictures, and we shall see that this is indeed the case. While it is 
known (Rein 1969, Popov 1971) that the arbitrary constant present in Case’s solution 
can be put in a one-to-one correspondence with a cut-off parameter of the cut-off 
Coulomb problem, we shall show in the next section that the algebraicmethod leads to a 
solution describing absorption of the incoming particle in analogy with the correspond- 
ing classical problem. Support for this viewpoint can be already found in Barut and 
Beker (1974), where it is shown how spectrum (9’) can be derived from a heuristic 
quantization of angular momentum in the classical equations. 

3. Scattering states 

In the scattering region we write the most general solution to (1) in the form (now, 
k = Ee2Z/(E2-  m~)’”): 

W-ik,iA(ip) + B  
r($-iA +ik)  r($-ih - ik ) ‘  

wik,iA(-ip) u(k ,  A, P )  = A  

It would be quite tedious to compute phase shifts with (10) using (6), as we did for bound 
states. Let us note that (6)  will be satisfied at r = 0 if the conditions: 

are satisfied. As can be checked, (12) is always satisfied if (11) is, and, furthermore 
selects the value k o  = 0 in (9). We shall only compute phase shifts for this particular 
value of ko, as our main goal is to study what kind of physical picture emerges from the 
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algebraic approach. For the boundary condition at infinity, we shall require, as is usual 
for a Coulomb problem: 

u(k ,  A, p )  + C(A, k )  sin(pr + k In p + 8 ( A ,  k ) )  (13) 
r -30  

where p = ( E 2  - mi)”’, and 6(h,  k )  is the phase shift, C being an arbitrary normaliza- 
tion constant. Using the formula (Gradstein and Ryzhik 1965): 

we eventually find, from (7), ( l l ) ,  (13), (14): 

where 

pi =argr(i-iA i i k ) .  (16) 

Thus we find that the phase shift becomes complex for e 2 2 >  1 +$, indicating that one 
absorption (IS1 < 1) channel has now opened. This is not surprising if one remembers 
that, in the corresponding classical problem (Cawley 1967, Barut and Beker 1974), the 
particle is absorbed by the centre of the field for e 2 Z >  M, where M is the classical 
angular momentum. As, in quantum mechanics, elastic scattering is always present 
even in the case of total absorption (Gottfried 1966), we get, for the quantum 
mechanical problem, a complex phase shift describing elastic scattering of the charged 
particle in the presence of some absorption channel. Our analysis of scattering states 
thus further supports the claim (Barut and Beker 1974) that the algebraic solution is the 
quantum mechanical analogue of the classical solution. 

4. Conclusions 
Our main goal in this paper was to find out why two mathematical methods both 
purporting to solve the singular Coulomb problem by providing a set of solutions 
defining a domain over which the Hamiltonian is essentially self-adjoint failed to give 
the same spectrum. We showed that the origin of this paradox lies in the fact that the 
scalar product was different in both approaches. We also showed that the phase shifts 
for the solutions given by the algebraic method become complex for e 2 Z >  1 +& in 
agreement with the corresponding analysis of the classical problem, where, for 
e 2 2 > M ,  the incident particle is absorbed by the centre of the field. The physical 
picture hnderlying the algebraic approach is thus essentially different from the one 
underlying Case’s method, which is equivalent to solving the Klein-Gordon equation 
with a cut-off Coulomb potential, the cut-off radius being much smaller than the particle 
Compton wavelength. 
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